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Apex, an elaboration of the three-tier type architecture used successfully in 
many autonomy applications, is designed around the concept of modular reasoning 
and control services (RCSs) with response-time characteristics as a primary factor 
in module delineation.  We believe this approach reflects a valuable synthesis of 
requirements from diverse missions types and systems, and avoids pitfalls 
commonly seen in autonomy architecture design.  The paper presents an overview 
of the architecture, its design rationale and its deployment in Unmanned Aerial 
Vehicles (UAVs). 

Nomenclature 
AI = Artificial Intelligence 
DM = Deliberation management 
ECI = Expected cost of ignorance 
M&I = Monitoring and interpretation 
PDL = Procedure Description Language 
RCS = Reasoning and control service 
TC = Task control 
UAV = Unmanned aerial vehicle 

I.  Reuse of autonomy software 
With UAVs rapidly becoming more capable, more available and less expensive, and with good 

prospects for a regulatory environment favoring more operational flexibility, UAVs are proposed for use in 
increasing variety of missions.  In many cases, autonomy or reduced human supervision is considered a 
functional or economic requirement1.  This presents a significant engineering challenge.  In particular, as 
UAV technologies and missions evolve, so must the intelligent automation (autonomy software) used to fly 
the vehicle, control the payload and manage the mission.  Autonomy software, like sophisticated 
automation software of any kind, is expensive to create and risky to use without extensive testing.  One 
way to mitigate these costs and risks is to reuse software proven in previous autonomy applications.   

Reusable autonomy software should have three key properties.  First, it should implement reasoning 
and control capabilities that satisfy important requirements for new applications but would be difficult and 
time-consuming to reconstruct – i.e. it must supply significant leverage in constructing new autonomous 
systems.  Second, the implementation of these capabilities should be easily portable to new applications.   
Third, the set of capabilities should be easily extensible – i.e. there should be no significant problems of 
integration when adding new capabilities or modifying preexisting ones.   

The first property, leverage, requires implementing autonomy-related capabilities in a more general way 
than is strictly required for a particular application.   For instance, rather than design software to diagnose 
anomalous values from a specific vehicle sensor, one could incorporate diagnostic reasoning software2,3 
that applies to a wide variety of sensors and other system components.  There are costs to creating and 



validating software more general than it needs to be, so the challenge is to spend effort generalizing a 
solution where the future payoff is greatest.  We use the term “reasoning and control services” (RCS) to 
refer to implementations of specific autonomy-enabling capabilities expected to be useful in a wide variety 
of applications. 

Portability and extensibility depend on the overall software architecture in which RCSs are 
implemented.  A software architecture specifies unifying design decisions about, e.g., primary data types, 
modules and integration principles4.  Ideally, these decisions are sufficiently comprehensive to ensure 
desirable system qualities.  Software architectures designed specifically for autonomy (autonomy 
architectures) have been developed in a variety of application areas including UAVs5, advanced life 
support6, ground mobile robots7-9 and unmanned spacecraft10-12 and many others.  Each of these systems 
incorporates reasoning and control capabilities of demonstrated value.  However, few such systems have 
been reused in a variety of distinct applications and little investigation has been made of the specific 
problems of autonomy software reuse. 

We have developed reusable autonomy software with an overall objective of reducing the time, 
expertise and inventiveness required to build new systems.  The software, Apex, has been used in diverse 
applications including two UAV efforts described below.  These efforts have been an invaluable source of 
lessons learned about the specific requirements for effective reusability, particularly in defining the kinds of 
reasoning and controls services most often found to be useful in new applications and the specific 
architectural commitments needed to facilitate reuse.  In this paper, we describe Apex RCSs and 
architecture and illustrate our approach to reuse in the context of two UAV applications. 

 

II.  Example applications 
 

A. The Autonomous Rotorcraft Project 
 

 
Figure 1:  ARP RMAX research aircraft (left) and instrumentation trailer (right) 

 
The Autonomous Rotorcraft Project13 is an Army/NASA collaborative effort to develop UAV autonomy 
with a subscale rotary wing aircraft used as a demonstration platform.  Autonomy-enabling capabilities 
developed by the project include obstacle avoidance path planning, safe landing area determination in GPS-
denied conditions, robust flight control software for takeoff, landing and forward flight and intelligent 
mission management for diverse missions.   The Yamaha RMAX helicopter used by the project is capable 
of approximately one hour of hover flight duration with a 65lb payload and a maximum speed of about 
40kts.  Originally designed for remote control agricultural seeding and spraying, the RMAX has been 
modified for autonomous flight.  Modifications include an avionics payload carrying a navigation and flight 
control computer, a research computer, IMU, GPS receiver and radio communications equipment.   
Separate from the avionics payload is a vibration-isolated stub wing mounting various tilt-actuated cameras 
for stereo passive ranging, monocular tracking and storing or streaming color video of an observation 
target.   A SICK PLS scanning laser mounted beneath the nose is used for obstacle avoidance and high-
resolution mapping.  Hardware and software systems are continuously enhanced with flight tests taking 
place approximately weekly. 



Apex provides mission-level autonomy capabilities supporting a range of aerial observation 
mission-types, focusing particularly on surveillance missions in which numerous observation targets must 
be monitored by a single UAV.   The objective is to maximize the value (quantity, quality and timeliness) 
of information about the targets returned to ground systems.  For example, in a fire detection application, 
there may be many structures that could potentially catch on fire but only a single UAV to move from site 
to site to check for an outbreak.  Sites may vary greatly in importance, probability of catching on fire, 
remoteness from other sites, remoteness from firefighting resources and many other factors that affect the 
value of observing the target at any given time. The optimum behavior might involve patrolling only a 
subset of the sites, or visiting some far less frequently than others.  Analogous applications in, e.g., disaster 
management, force protection, Earth science and security present the same fundamental problem.  We have 
formally characterized this general class of missions in order to define specific autonomy requirements and 
performance evaluation criteria14: 
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We focus on surveillance missions in which events of interest are rare. Mission performance cannot be 
evaluated effectively on the basis of events actually observed, but must instead be characterized in terms of 
how well the agent reasoned about the probability and costliness of events that might have occurred.  This 
entails an essentially decision-theoretic approach.  Given that the vehicle can generally observe only a 
single target at a time and must spend time transiting to and examining each target, it will necessarily not 
be observing most targets most of the time – i.e. it will be “ignorant” of the state of these targets.  We 
define Expected Cost of Ignorance (ECI) for the period between successive observations of a given target 
as the sum, for all time points t in the interval, of the probability of an event occurring at t multiplied by the 
cost if it occurs at t.  Summing for all such intervals and for all targets, we can compute a total ECI for the 
mission given a specific target observation schedule.  The goal of an autonomous agent is to minimize 
overall ECI accumulated over the time period of a mission. 

Autonomy requirements for such missions derive from three sources: the objective function 
(metric) above, characteristics of targets and environment needed to define specific probability and cost 
functions (e.g. target value as a parameter of the cost function) and characteristics of vehicle, sensors, 
physical environment and ground systems that constitute sources of uncertainty or constraint in executing 
observation plans.  

Apex incorporates a range of reasoning and control capabilities aimed at meeting these 
requirements.  A periodic-surveillance planning service generates plans specifying visit order and 
observation actions at targets.  In fact, as discussed further on, there are several such planning services 
which vary in situational effectiveness. A solver selection service is used to predict which planner will 
perform best in a given situation.  Services supporting contingency detection can determine, e.g., when 
weather or other conditions have changed enough to warrant replanning or when operational requirements 
have been violated and require corrective action.  Contingency detection behavior can be specified directly 
by a developer or derived from a TEAMS model15. 

Apex computes at-target observation behavior based on specific data-acquisition goals.  For 
example, it can command the vehicle to arc over a target, controlling camera tilt to maintain target track 
through the maneuver.  As the vehicle nears the peak of the arch, beyond which the camera can no longer 
be tilted enough to stay pointed at the target, the vehicle slows, changes its heading 180 degrees and then 
increases speed, completing the arch in reverse in order to maximize tracking.   In general, at-target 
behaviors involve coordinating three-dimensional flight-path (e.g. straight over, straight aside, spiral, arc, 
sweep), attitude mode (coordinated flight, fixed attitude, pointing), speed profile, sensor payload behavior 
and data handling behavior.  Apex synthesizes these behaviors at runtime rather than requiring an operator 
to specify specific behavior directly. 
 
 
 



B. The Intelligent Mission Management Project 
 
 

 
Figure 2: Predator B aircraft (left) and illustration of use in Western States Fire Mission (right) 

 
The Intelligent Mission Management project supports autonomous UAV-based acquisition of Earth science 
data.  Platform requirements are expected to vary from small fixed-wing aircraft to large, high-altitude, 
long endurance aircraft able to carry large, sophisticated sensor payloads.  At present, an initial set of 
autonomy capabilities have been developed, integrated with collaboration-facilitating ground systems16 and 
demonstrated in two simulation environments.  Initial flight testing is scheduled to begin in 2007 on a 
Predator B, a fixed-wing aircraft with approximately 3000 lbs payload capacity and range exceeding 3000 
nm. 

In the nearer term, autonomy capabilities have been developed for the Western States Fire 
Mission, a demonstration in which airborne fire sensing payload will be used to map a large number of fires 
(possibly several dozen) over a period of approximately 24 hours (see Refs. 17 and 18 for a more complete 
description).  The actual flight test will be conducted with human remote pilots rather than autonomous 
control. Apex will fly a simulated version of the mission in parallel as a demonstration and may provide 
decision support to human operators for flight plan generation.  The autonomy performance metric for this 
mission, and for anticipated IMM missions in general, has been formally characterized as follows: 

 
 

 
 
 
The primary goal of IMM missions is to acquire as much high quality data as possible within a timeframe 
defined by vehicle endurance or a specified maximum duration.  Each observation target is associated with 
a value (v) and a set of data quality preferences for image resolution (r), clarity (s), coverage (c) and timing 
(o).  For example, it may be desirable for a particular target to get 10m per pixel image data (requiring a 
certain maximum altitude), prevent image gaps (requiring wings-level attitude while observing), acquire 
data on the perimeter but not necessarily the interior of the target area, and to synchronize observation of 
the target with a MODIS satellite overpass.  If these preferences are not fully met, the value of having 
observed the target is discounted from v.   

The autonomy software is responsible for maximizing information benefits by generating and 
executing an optimal flight plan. Implicit in the metric are tradeoffs that the autonomy may need to reason 
about – e.g. which subset of the targets to visit, whether to sacrifice resolution to gain clarity by ascending 
out of a turbulent altitude and whether to visit one less target in order to recover from wings-level 
violations at the current target by reflying certain segments.  In addition, plan validity may be constrained 
by several factors including target visit ordering constraints, airspace restrictions and a requirement to 
remain within some maximum distance of an emergency landing locale. 



A second role of the autonomy is 
to minimize costs. Personnel costs depend 
on the number of people with an 
operational role in the mission and the 
time and pay rate of each.  This accounts 
for a basic economic contribution of 
increasing autonomy: reducing the need 
for human operators, particularly those 
who cost the most or have the rarest and 
most in-demand skills.  Failure costs 
result from unanticipated losses such as 
damage to a sensitive optical sensor 
accidentally pointed at the sun, or aircraft 
loss resulting from a critical system 
failure.  Autonomy software can minimize 
failure costs both by avoiding bad 
decisions that cause failure and by 
responding quickly and correctly to 
failures in other systems. 

IMM missions and ARP 
missions have in common that they 
involve autonomous aerial observation of 
separate targets and that the information 
value from a particular mission can be 
formally characterized.  Many of the 
specific reasoning and control services 
provided by Apex are used in both 
projects including services supporting 
contingency detection, generation of at-
target observation maneuvers and planner 
invocation during the mission (replanning).  However, the overall mission objectives are quite different.  In 
ARP missions, the core planning problem is to reason correctly about observations whose value is defined 
probabilistically and with respect to the time since the target was last visited. IMM missions are focused on 
sequencing single visits to selected targets with known (assigned) value and on maximizing data quality at 
a given target.  In addition, plans for IMM missions may require meeting constraints such as ordering 
constraints on target visits or synchronizing an observation with a MODIS satellite overpass.  Mission 
planning requirements in the two applications are thus quite different. 

 
Figure 3. Overview of Apex integration architecture.  
 

 

III.  Building Apex applications 
 Constructing a new autonomy application using Apex involves two main steps.  The first is to integrate 

with the controlled system (see Figure 3).  Integration requires specifying system properties (e.g. real-time 
vs. simulated-time) and then implementing data transport mechanisms allowing the Apex-defined 
subsystem to receive information from and send commands to other subsystems.  Lower layers of the 
transport mechanism (physical and media layers and session layer in the OSI model) are typically managed 
using vendor-supplied interfaces, such as TCP or UDP over IP.  In many cases, software filters and 
transducers must be implemented to manage data flow into Apex and to convert the input data into a form 
Apex can process.  For example, the ARP avionics software publishes a message packet, RCDynamicState, 
containing information on more than 30 state variables including, e.g., airspeed, heading, altitude and roll-
rate.  Our integration code subscribes to RCDynamicState, extracts the values relevant to the autonomy 
software, and then converts into an Apex-usable format.   

Commands output from an Apex agent to the controlled system are referred to as primitive actions.   
Such actions are generated using a template.   For example, the primitive template below defines how the 
system can command a flight simulator (XPlane) to begin broadcasting information on a specified aircraft 



state variable via UDP.  The index clause defines the name of the command and its parameters.  When 
the form is invoked, code embedded in the on-enablement clause is executed to enact the command. 
 
(primitive 
 (index (enable measurement ?variable)) 
 (on-enablement  
  (xplane-set-channel  
   (xplane-channel-lookup ?variable) "DSEL"))) 
 

The primitive form is one of several top-level forms in Apex’s Procedure Description Language 
(PDL). Apex reasoning and control service modules define the operational semantics of PDL constructs. 
For example, the primitive form above illustrates two basic Apex RCSs: pattern matching, and task-
state transition control. The pattern matching service links an Apex agent goal to a construct (such as a 
primitive form) specifying how to achieve that goal.  This allows for a flexible naming scheme for  PDL 
forms that enhances readability and can be parsed by RCSs into structured goal representations. In addition, 
the pattern matcher can enforce a wide range of match constraints.  For example, by replacing the index 
clause in the previous example with the one below, the primitive form would automatically check whether 
the requested XPlane variable is legitimate. 

 
(index (enable measurement (?is ?variable valid-variable-p))) 
 

The second step in constructing an Apex application is to specify desired autonomous behavior.    Apex 
agents are goal-driven – i.e. they are given a set of goals to be accomplished rather than specific action 
sequences to carry out.   Reasoning and control services determine how to achieve these goals based on 
general knowledge represented in PDL procedures, specific situation knowledge received from sensors and 
communication channels and a set of tasks.  A task represents an intention for how and when to pursue a 
particular goal. More specifically, it represents a commitment to act under specified conditions to realize a 
policy. Such conditions may represent normal occurrences or states (e.g. current altitude above ground level 
is high enough to safely perform a maneuver) or unusual, off-nominal conditions (e.g. altitude has been in 
uncommanded decline for 20 seconds).  Apex handles nominal and off-nominal conditions in the same 
way.  This simplifies behavior specification and allows contingent behaviors to take advantage of the full 
range of task RCSs. A policy defines the specific condition that the task is intended to bring about or 
preserve. In some cases, the condition is a goal as the term is often used in the artificial intelligence 
literature;  i.e., a state to be achieved, maintained or prevented, e.g. “maintain altitude FL120”. The desired 
condition might also be more abstract.  For instance, it may be tied to indefinite (non-specified) state 
variables (e.g. complete checkout procedure); it may be defined functionally (e.g. be vertically separate 
from any aircraft with 5 miles by at least 1000 feet); or it may be defined by an optimization criterion  (e.g. 
be at the best observation position for current target given sun-angle, wind-vector and optimization function 
F).  We use the term policy to include all such cases. 

Information about how to accomplish a task – i.e. how to realize a task’s policy – is represented in PDL 
procedures.  The following example defines a procedure to image a ground target using a high-resolution 
fixed-angle camera called camera-1.   
 
(procedure 
  (index (get hires image ?target)) 
  (profile camera-1) 
  (step s1 (move-to best-imaging-loc for  ?target => ?loc)) 
  (step s2 (power-up camera-1)) 
  (step s3 (orient-camera-to ?target) 
      (waitfor (:and (ready camera-1)(location +self+ = ?loc)))) 
  (step s4 (take-picture camera-1) 
 (waitfor (end ?s3))) 
  (restart-when (task-state +this-task+ = resumed)) 
  (end-when (image-in-memory ?target))  
 



Each procedure contains at least an index clause and one or more step clauses.  As with primitives, 
the index uniquely identifies the procedure and defines what kinds of goals it serves. The pattern 
matching service is used in procedure selection, just as it is for primitives. Each procedure step specifies a 
new task (subtask) to be instantiated.  These subtasks are not necessarily carried out in listed order.  
Instead, they are assumed to be concurrently executable unless otherwise specified.  If ordering is desired, a 
waitfor clause is used to specify that the completion of one step is a precondition for the start of 
another. For instance, the steps labeled s1 and s2 do not contain waitfor clauses and thus have no 
preconditions; tasks generated from these steps can begin execution as soon as the procedure is invoked 
and can run concurrently. Step s3, in contrast, includes the clause (waitfor (:and (ready 
camera-1) (at-location ?loc)). This means that a s3 becomes eligible for execution 
(enabled) only when the agent received messages indicating a successful outcome to s1 and s2. 

 Tasks can be in any of the following states: pending, enabled, ongoing, interrupted, terminated.  A task 
with preconditions specified by a waitfor clause starts in a pending state.  When the preconditions are 
satisfied (or initially if there are no preconditions) the task becomes enabled.  Tasks often require resources 
(declared in a profile clause as above) and may conflict with other running or enabled tasks with 
overlapping resource requirements.  A task must wait in an enabled state until it becomes the highest 
priority competitor for all needed resource; at that time its state is changed to ongoing.   In some cases, an 
ongoing task becomes lower priority than a competing task in which case its state becomes interrupted.  
Finally, when the task completes (or is aborted), its state is changed to terminated.  Numerous Apex 
reasoning and control services are involved in managing task state transitions.  For example, there are 
services for detecting conflicts, resolving conflicts and handling any interruptions or resumptions that 
result.  These are discussed in detail elsewhere19-21. 

Other important services check whether conditions requiring a task state transition have been met.  
Conditions, defined in waitfor clauses and other PDL constructs, are represented in a task subcomponent 
called a monitor.  Monitors check for their associated conditions using three sources of information.  First, 
internal mechanisms (RCSs) generate events.  For example, an event is generated when a task terminates, 
thus satisfying a precondition for any task with an associated ordering constraint.  Similarly, any resources 
allocated to a terminated task are released, causing any task waiting for that resource to compete for it.  
Second, external sources provide information via sensors and communication channels.  Third, information 
from these other sources is stored in state variable histories.  These are essentially time-stamped 
measurements for a specific attribute of a specific object (e.g. the altitude of a particular aircraft).  
Condition monitoring services check these sources to determine whether information from some or all of 
these sources can be interpreted as satisfying a specified condition.  Conditions may be defined in terms of 
constraints on individual state variable values, episodes defined abstractly over a state variable interval, 
logical constraints, and Allen predicates on intervals.22  More detailed information on condition handling is 
included in Appendix B. 

When task preconditions are satisfied and the task becomes enabled, selection services determine how 
the task policy will be carried out.  The selected method is later (when the task becomes ongoing) used to 
create new specific new structures to enact the policy; these structures are referred to as a controller.  This 
process can occur in any of several ways.  One possibility is that a procedure will be selected, leading 
eventually to further (hierarchical) subtask creation.  For instance, a task T1 with the goal (power-up 
camera-1), created using the example procedure above, might be matched against another procedure 
with (power-up ?any-camera) as its index clause.  That procedure would then provide a template 
for creating new tasks that, in combination, accomplish the power-up task.    A second possibility is that the 
task will be matched to a primitive, which defines a primitive controller for the controlled system (possibly 
just a single command as in the earlier example).   

If no matching procedure or primitive exists, the selection RCS will call an AI planner (solver) to 
construct a new procedure.  Planners are valuable for handling goals not handled by anything in an agent’s 
procedure library.  For some kinds of goals, use of a planner is the norm (e.g. path planning in non-routine 
task environments). However, procedures can be used to define a wider range of behaviors than is practical 
with current-generation planners and they more easily facilitate meeting agent response-time requirements.  
Predefined procedures are therefore used where possible.  

Specifying the procedures, primitives and planners that define autonomous agent behavior is typically 
the most time-consuming and effortful part of applying Apex in a new application.  In practice, making 
Apex reusable requires limiting these costs.  One approach is to make the behavior specification language 



as usable and convenient as possible.  In particular, the language should be readable (e.g. compact, not 
excessively abstract), expressive (the right way to express behavior information should be obvious), 
intuitive (the actual behavior should conform to the intended behavior) and should have clear 
correspondence with generated runtime structures that may need to be examined when debugging.  We 
have tried to develop Apex’s Procedure Definition Language to intuitively mirror the reasoning and control 
services provided. User feedback has been invaluable in learning how to improve PDL usability, 
particularly in discovering non-intuitive language constructs and failures to provide sufficiently expressive 
notation.  Second, powerful visualization tools can be created to help understand the online decision-
making of an autonomous agent and to facilitate debugging.  Apex’s Sherpa development tools serve this 
role24.  Finally, it is sometimes possible to reuse behavior specifications such as PDL procedures in 
multiple applications.  This is especially valuable if specialized expertise was required to construct the 
representations – see Ref. 25 for examples. 

IV.  Apex Reasoning and Control Services 
In Apex, Reasoning and Control Services are, specifically, the set of functions that create tasks, modify 

tasks or provide procedural semantics for task monitors and controllers. Several capabilities implemented 
as distinct RCSs have been mentioned already including, e.g., matching sensor inputs to precondition 
patterns and detection of resource conflicts.  The functionality and degree of integration of system RCSs 
are largely hidden from a developer using Apex, but these attributes are central in determining the system’s 
value and fitness for reuse.  

RCS functions in Apex fall into four general classes.  Monitoring and interpretation (M&I) services 
provide functionality for handling input data (e.g. from sensors) and stored data. This includes creating 
monitors from PDL specifications, pattern matching to asynchronous messages containing data, logging 
and retrieving data, enforcing policies logged data quantity, extracting, subsampling, interpolating, trend-
finding, and many others.  In general, M&I services are used to create and perform analysis prescribed by 
task monitors. Task control (TC) services provide functionality for deciding and enacting behavior.  This 
includes, e.g., selecting procedures and primitives, instantiation of new controllers, detecting resource 
conflicts, resource allocation between contending tasks and governing task state transitions (enablement, 
disenablement, interruption, etc…).  TC services are for creating and carrying out actions prescribed by 
controllers. 

As discussed in the next section, TC and M&I services are integral parts of the central (executive) 
decision-making component which is designed to be both general-purpose and rapidly responsive.  Solvers 
are services that perform either M&I or TC functions, but use algorithms (e.g. AI planners) that are useful, 
perhaps critical for a given application, but either too specialized or too computationally expensive for 
inclusion in the executive.  Deliberation management (DM) services incorporated into the executive 
provide functionality related to the use of solvers: selection, invocation, process control and transformation 
of output into a form usable by executive functions.   

Within these general classes, Apex RCSs can be further divided into a hierarchy of more specific types.  
The leverage Apex provides for constructing new autonomy applications depends on the functionality and 
integration among specific RCSs.  Our approach to maximizing leverage is illustrated by two closely 
related examples. 

 
Example 1.  In the Intelligent Mission Management application described earlier, the sensor payload 
requires wings-level flight over a target.  When violations of sufficient magnitude and duration occur, the 
sensor cannot obtain data on a portion of the target area.  The PDL example below defines a procedure step 
that responds to a wings-level violation by creating a task to repeat the flight segment where the loss 
occurred.  

The waitfor clause in this example leads to creation of a monitor that looks for a wings-level 
violation likely to produce data loss.  In particular, it looks for an episode (a durative condition) in which 
the roll-angle of the aircraft exceeded the threshold +max-roll-angle-deviation+ for a period of 
time greater than +max-off-nominal-roll-angle-duration+.  Both time and angle thresholds 
are established at runtime using functional variables (indicated by the surrounding + symbols).   When a 
violation is detected, the select clause determines the location where the violation episode began, then 
passes this value to the step activity description where it is used to specify a task to refly the interval. 
 



(step (refly segment visited from ?loc to +current-location+) 
      (waitfor  
       (:episode roll-violation (roll-angle +this-aircraft+) 
         :value (> +max-roll-angle-deviation+) 
         :timing  
          (:duration (> +max-off-nominal-roll-angle-duration+))) 
    :quality (:no-constraints))) 
      (select ?loc  
        (most-recent-SVvalue 'location +this-aircraft+  
          :prior-to (start ?roll-violation))) 
    

 
Example 2.  In the Autonomous Rotorcraft Project, there is a requirement for the vehicle to stay in 
communication with a ground station.  Signal strength from ground normally varies and can even drop to 
zero for short periods without constituting a violation of the communication requirement.  When a violation 
does a occur, the vehicle should return to a position where signal strength was acceptable, signal to ground 
that a violation occurred and await instructions. 
 
(step (regain-comm-at-location ?location) 
    (waitfor  
        (:episode comm-violation (signal-level 900MHzModem) 
          :value (< (+ +nominal-signal-strength+)) 
      :timing   
            (:duration (> +max-off-nominal-signal-strength-duration+)) 
      :quality (:no-constraints))  
    (select ?location  
     (most-recent-SVvalue 'location +this-aircraft+  
      :prior-to (start ?comm-violation)))) 
 

The waitfor clause in this example defines a monitor that looks for a communication dropoff lasting 
more than +max-off-nominal-signal-strength-duration+.  When this occurs, the last 
location where signal strength was acceptable is determined and the value used to specify a task returning 
to that position. 

The two examples illustrate the reusability of several reasoning and control services in different 
applications.  In both cases, the agent is looking for an interval in which some measured quantity goes out 
of bounds for an interval.  This involves M&I services for monitoring, logging and retrieving sensor data 
and for rapidly detecting the establishment of conditions (episodes) defined by temporal properties and 
value trends.  In both cases, a property of the episode is used to compute part of the response.  This 
involves TC services for finding or interpolating within data with specified temporal and relational 
properties and for handling information dependencies in specifying enabled tasks. 

None of these services were part of the original version of Apex.  Initially, the system could monitor 
only for individual events matching specified patterns and for conjunctions and disjunctions of such events.  
Over a series of application efforts, functional limitations of M&I services often proved problematic, 
resulting in a lengthy list of desired enhancements.26 In some cases, the need for enhancement arose from 
integration issues – i.e. the need to make new functionality work correctly and flexibly (composably) with 
other RCSs.  In other cases, implementing the functionality required specialized expertise or substantial 
engineering effort to achieve acceptable performance.  In general, it has proven hard to guess which 
functional capabilities are most reusable and thus most worth investing effort in.  Lessons learned from 
building applications have proven the only reliable guide.  

V.  Apex Software Architecture 
 

Capabilities of implemented reasoning and control services define potential benefits from reusing 
autonomy software.  Limits on portability and extensibility determine how difficult the software will be to 
reuse, and thus determine costs.  A well-designed software architecture, by imposing unifying design 



decisions on data representation, modularity and integration, can go a long way towards facilitating 
portability and extensibility.   

The Apex architecture is based on a well-known approach to autonomy architectures in which 
functionality is divided into three modular layers (See Refs 27,10 and compare to Ref 7). Typically, the top 
layer contains a computationally expensive AI planning algorithm that sends plans to a fast-acting 
reactive execution system (layer 2).  The execution system dispatches runtime commands to platform- and 
domain-specific skills (layer 3), which directly control subsystems.  Mission-level goals, constraints and 
preferences are fed to the planner from an external source, either a human operator or a software mission 
manager component.  In Apex, the mission management and execution system functions are combined 
into a single component referred to as the executive.  By analogy to piloted aircraft, the skills layer can be 
thought of as implementing traditional flight automation (autopilot) while the planner and executive play 
the role of a human pilot.   

The three-layer approach makes two design concepts paramount.  The first is to separate “deliberative” 
functions that may be too computationally expensive to meet application response-time requirements (layer 
1) from more responsive functions (layers 2 and 3).  The central importance of response time for UAV 
applications is easily understood.  For example, the mission-level objective for both UAV applications 
described earlier involves optimizing the overall value of information returned to ground personnel.  Plans 
that are (approximately) optimal when generated can become invalidated or less optimal by a wide variety 
of execution-time occurrences – e.g.: changes in wind, unexpectedly long or short time required to carry 
out a plan step, additions, deletions and changes in priority to the target set, and new information affecting 
the likelihood or expected importance of changes at particular targets.  Frequent replanning should be 
expected.   

However, algorithms able to generate optimal plans (solver RCSs) are typically very demanding of 
computational resources – NP-complete or worse.   There is no practical upper limit to the amount of time 
such algorithms might take before finding the best plan or even an acceptable plan.  Separating out 
expensive deliberative functions, allows functions in the 2nd and 3rd layers to operate as a responsive outer-
loop control system for the UAV.   When deliberative processes take too long, default or safing behaviors 
can be invoked.  There are several ways to make use of deliberative planning processes given a responsive 
execution system.  The most common approach is to generate plans only prior to a mission, or else at 
scheduled time-points in the mission where responsiveness requirements are expected to be low (See Refs. 
6 and 28). Alternately, deliberation can be treated as a controlled process that can be paused, redirected 
and, in the case of anytime algorithms (see, for example, Ref 28), polled for a “best result so far” when a 
solution is needed.  

The second design concept intrinsic to the three-layer approach is to separate the most-reusable code 
(the top two layers) from the least reusable (the bottom layer), thereby facilitating portability.  Determining 
which code is reusable is partly a matter of identifying application-specific problem features and either 
decoupling code that assumes these features from code than does not, or else designing code that 
generalizes over such features and can be configured for their presence or absence.  The importance of 
identifying and separating out problem-specific features is illustrated by the Ariane 5 incident29 in which an 
assumption built into reused code led to mission failure.  The functional scope of Apex RCSs represent 
decisions about how to distinguish general from application-specific capabilities.  Portability is further 
enhanced by well-designed, clearly documented APIs.  The Apex API consists mainly of a configuration 
function (defapplication), two functions for providing input to an Apex agent (one for message-
passing, one for publish-subscribe) and the PDL primitive form for specifying Apex agent output. 

Achieving good extensibility requires addressing issues beyond those specifically considered in the 
three-layer approach.  First, extension is simplified if RCSs are built on a common foundation, particularly 
if their inputs, outputs and internal states are represented using a small, shared set of well-defined 
structured information types.  In Apex, all state information able to influence the behavior of an Apex agent 
is held in tasks (including monitors and controllers) and a few less central structures (histories, resource 
allocation tables, agents).   

Second, it is generally easier to extend a system organized around a fine-grained, modular 
decomposition of functions than one whose modules incorporate numerous, closely coupled functions.  A 
smaller functional grain size makes it more likely that swapping in a module with extended capabilities will 
not be disruptive and more likely that an entirely new functional capability can be implemented in a module 
and integrated the same way as some similar, pre-existing module.  The hierarchical structure of Apex 
RCSs is designed to provide fine-grained modularity.  For example, M&I services for detecting cyclic 



patterns are currently being designed; integration should require little more than a straightforward insertion 
of the new RCSs into the executive and a simple extension to PDL’s syntax definition. 

Third, if the need for particular kinds of extensions can be anticipated, the architecture can be designed 
to facilitate incorporation.  For example, current Apex M&I services can detect diverse event-pattern types 
including certain trends and combinations of simpler patterns with specified logical and temporal relations.  
Requirements to further extend the kinds of recognizable patterns (e.g. cyclic patterns) are very likely.  The 
modularity and integration approach within M&I software has been designed with this expectation, 
particularly in associating different classes of detection with distinct modules, providing generic operators 
for handling data (state variable) histories and streamlining the process for extending the PDL language. 

C. Extensibility example 
Anticipating needed classes of extension is especially important for applications where requirements are 

either not well-understood at the outset or are likely to evolve during the operational lifetime of the 
autonomous system.  In the Autonomous Rotorcraft Project, for example, the objective has been to provide 
a very flexible capability for using a single UAV to maintain situation awareness at spatially separated 
sites.  Both NASA and the U.S. Army, joint sponsors of the project, carry out missions and routine 
operational activities that fit this general description.  However, there is no well-defined concept of 
operations for using autonomous UAVs in this capacity.  

To provide a capability flexible enough for missions that are not currently specified and likely to 
evolve, we have formally characterized the surveillance planning problem as previously described (see also 
Ref 30).  A surveillance mission, in this context, is defined by a set of observation targets and functions for 
each target for determining the time-varying likelihood that an important event will occur, the time-varying 
cost of not observing an event once it has occurred, and the time-cost of observing a given target to detect 
the event of interest.  The role of a surveillance planner, implemented as a solver RCS since this capability 
is not provided natively by Apex, is to find a plan that minimizes the sum ECI (expected cost of ignorance) 
for all observation targets.   

Surveillance missions of this sort will vary in different ways.  Some will have a greater number of 
targets and some fewer.  In some, the targets will be close enough together that a detailed aircraft model 
will be required to compute transit times while in others, point-to-point distance provides an accurate 
estimate.  Targets may fall into spatial patterns that simplify the planning problem (e.g. clusters) or may be 
uniformly distributed.  Targets may be of equal value or value might vary widely.  Constructing a single 
planner that produces good surveillance plans in all conditions presents a difficult, perhaps insurmountable 
challenge.   

An alternative is to develop a variety of surveillance planners with varying strengths and weaknesses 
and RCSs able to select the best planner for the current mission.  There are four primary elements to this 
approach: invocation, problem classification, planner selection, and translation.   Invocation of a planner 
occurs when the monitor component of a task determines that all preconditions have been met – i.e. that the 
task is eligible to start.  The selection RCS then tries to find a stored procedure whose index clause matches 
the task’s policy specification.   If one is found, it is then used to generate a controller to carry out the 
policy.  Otherwise, the solver selection RCS looks for a planner able to generate a new procedure.   
Sometimes there are multiple planners that can do the job.  In such cases, problem classifier RCSs are used 
to compute features of the planning problem useful for deciding between alternative planners.  In the case 
of ARP surveillance, we have implemented two planners that take very different approaches.  The first 
planner looks for the best repeatable cycle using a modified 2-Opt Traveling Salesman Problem algorithm 
to quickly select a path for a given (sub)set of targets.  The second planner (WAM) uses best-first search 
with replacement, using a heuristic based on target proximity and obsolescence (time since last visit) to 
incrementally construct a full mission plan. 
 To determine which plan to use, the space of possible surveillance missions is defined in terms of five 
features: number of targets, spatial distribution of targets, variability of target importance, variability of 
target cost accumulation rate and mission area size.  Given a current mission (planning problem) described 
in terms of these features, the solver selection RCS consults a predefined performance profile table (PPT) 
to select the best planner.  The example PPT (figure 4) shows how the two algorithms compare in a wide  



 

Figure 4. Surveillance planner performance profile 

Min of Best Count Space
4 8 16

Scale Rate Cost 2-Cluster Globular Uniform 2-Cluster Globular Uniform 2-Cluster Globular Uniform
Large Clustered Clustered 1 1 0 3 3 1 1 3 1

Fixed 1 1 0 3 3 1 2 3 2
Uniform 1 2 1 1 2 1 1 1 1

Fixed Clustered 1 1 0 1 1 1 1 3 1
Fixed 1 1 0 3 1 1 2 3 2
Uniform 1 1 1 1 2 1 1 3 1

Uniform Clustered 1 1 2 1 3 1 1 3 1
Fixed 1 1 2 3 3 1 2 3 1
Uniform 1 1 1 1 2 1 1 3 1

Medium Clustered Clustered 2 2 0 1 2 2 2 2 2
Fixed 1 2 0 2 2 0 2 2 2
Uniform 1 2 2 2 2 2 2 2 2

Fixed Clustered 1 2 0 2 2 0 2 2 2
Fixed 1 2 0 2 2 0 2 2 2
Uniform 1 2 2 2 2 2 2 2 2

Uniform Clustered 1 2 1 2 2 2 2 2 2
Fixed 1 2 2 2 2 2 2 2 2
Uniform 1 2 0 2 2 2 2 2 2

Small Clustered Clustered 2 1 0 2 0 0 2 2 2
Fixed 2 1 0 2 1 0 2 2 2
Uniform 2 2 3 2 2 2 2 2 2

Fixed Clustered 2 1 0 1 2 2 2 2 2
Fixed 2 1 0 2 2 2 2 2 2
Uniform 2 1 0 2 1 0 2 2 2

Uniform Clustered 2 2 0 1 2 2 2 2 2
Fixed 2 2 0 1 2 2 2 2 2
Uniform 1 1 0 2 2 2 2 2 2

Human
2-Opt
WAM
no diff

 
 
range of conditions.1  Once a planner is selected and run, the resulting plan can be transformed into a PDL 
procedure.  Apex treats stored and newly generated procedures uniformly, using the new procedure to 
specify behavior as if it had been present all along in the stored library.   

The described RCS components for invocation, classification, selection and translation define an 
extensibility framework.  When a new, distinctively capable planner is created, integration only requires 
creating an invocation interface (equivalent to a PDL index clause) for the planner, running it against 
whatever test suite was used to create the PPT, then updating the PPT to indicate when the planner 
outperforms alternative methods.   Similarly, if additional selection features are desired (e.g. to select a 
planner based on how well it performs after a given maximum deliberation time), a developer needs to 
create a classifier for the feature, modify the selection RCS to call the classifier and then update the PPT 
with appropriate feature values.  Creating a new classifier can be simple or very difficult depending on the 
feature and some analysis may be required to determine a useful range of feature values; the rest of the 
process can be automated.   

VI.  Conclusion 
 

Reuse of autonomy software is particularly important for UAVs.  Given the increasingly central role of 
autonomous operation in new UAV mission concepts and the resulting need to implement such software for 
rapidly evolving platforms and payloads, software reuse could be enormously helpful both for managing 
development costs and for preventing software implementation and validation from becoming a primary 
bottleneck in development of new systems.  However, reusing autonomy software requires meeting 
specific, practical challenges that have not previously been articulated and examined in detail.  Our focus in 
this paper has been to identify critical challenges and to highlight elements of our approach, implemented 
in Apex, that have proven valuable in UAV projects and other applications.   

 
 

 

                                                           
1 Note that this version of the table also shows where human planners perform better than either algorithm, 
thus providing a principled way to decide if the autonomous system could benefit by requesting human 
assistance 
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Appendix A: Referenced Reasoning and Control Services 
This is a list of the Reasoning and Control Services (RCSs) that Apex provides, and that are mentioned 

in this paper. This is a non-exhaustive list of RCSs provided by Apex. 
 
• Task Control Services 

o Resource conflict resolution 
o  Task state transition control  

 task enablement 
 task interruption 
 task resumption 
 task termination 

o Procedure selection 
o Subtask instantiation 
o Primitive invocation 
o Planner invocation 

• Monitoring and Interpretation Services 
o Pattern Matching 
o Resource conflict detection 
o Condition detection (monitoring) 

 constraint checking on individual measurements (value, object, timing) 
 constraint checking on measurement episodes (value, object, timing, statistical trend) 
 constraint checking on estimators 
 constraint checking on logical combinations of measurements and episodes 
 constraint checking on temporal ordering of measurements and episodes 
 value projection and interpolation 

o State variable history management  
o Event history management 

• Deliberative Management Services 
o Solver selection 
o Problem classification 
o New procedure generation 

•  Solvers 
o Modified 2-Opt path planning  
o WAM path planning 

 

Appendix B: Details on monitoring and interpretation services 
 
Monitoring and interpretation services detect task-relevant conditions such as satisfaction of preconditions 
that make a task eligible to start and violation of runtime requirements that require a task to be interrupted. 
Checking for a condition may involve monitoring newly arriving data, checking memory (state variable 
histories) for old data or some combination of the two.   Checking a condition may require simply 
determining whether a particular value exists in a precisely defined interval of state variable history.  For 
instance, the PDL clause(location +self+ = fuel-bay)defines a condition in which the agent is 



at the fuel-bay.  More specifically, the first two symbols refer to a state variable (location +self+) 
representing a history of measurements of the agent’s location – i.e. the location of the controlled system. 
The third and fourth symbol specifies that the condition concerns whether there exists a measurement in the 
state variable history with the value fuel-bay.  Since no constraints on what temporal interval within 
the history should be checked, a default is used.  If the condition is expressed within a waitfor clause, 
the default interval starts when the task is created and persists indefinitely (as the task waits for the 
condition to come about). 
 
Table 1 provides examples of the kinds of constraints on state variables that can be defined in PDL.  These 
include: 
 

• constraints on individual measurements, including on their value, object, or time of occurrence, 
• constraints on sets of measurements during an interval (episodes), including on their values, timing, 

aggregate statistical properties and trends  
• constraints on estimates of projected future values and interpolated past values, as well as 

constraints on the estimators themselves 
• logical combinations of the above  (logical and, or, not), 
• constraints on the temporal ordering of episodes, including the full set of Allen predicates22. 

 
Apex treats event signals in a manner consistent with state variables; events are considered atomic 
episodes; that is, referring to some unknown state variable, and that occur at an instant in time. Thus, 
conditions for events can be handled in a manner consistent with state variable conditions. 

 
Table 1: Examples of monitor constraint types 

Constraint type Examples 
Existence constraint in future (temperature engine-1 = +setpoint+) 
Existence constraint in past (in 
general, timestamp constraints) 

(:measurement (temperature engine-1 = +setpoint+)  
  :timestamp (< (start-of +this-task+))  

Value constraints (temperature engine-1 = +setpoint+ +/- 2) 
Object constraints (:measurement (temperature ?engine = +setpoint+) 

  :object (tracked-p)) 
Future projected value using 
persistence 

(:measurement (temperature engine-1 = +setpoint+) 
  :estimation :persist) 

Past interpolated value using 
linear regression 

(:measurement (temperature engine-1 = +setpoint+) 
  :estimation :linear-regression 
  :timestamp (< (start-of +this-task+))) 

Simple episodic conditions; 
constrained on value 

(:episode (temperature engine-1) 
  :quality :no-constraints 
  :value (> +setpoint+)) 

Simple episodic conditions; 
constrained on aggregate 
(statistical) values 

(:episode (temperature engine-1) 
  :quality :no-constraints 
  :stats (:stddev (> 2.5))) 

Simple episodic conditions; 
constrained on trends 

(:episode (temperature engine-1) 
  :quality :no-constraints 
  :trend (:rate :non-decreasing))) 

Logical constraints and/or/not (:and (:or (temperature engine-1 > +setpoint+) 
           (temperature engine-2 > +setpoint+)) 
      (position flaps = up)) 

Temporal constraints on 
intervals of episodic and 
measurement conditions (Allen 
temporal predicates) 

(:in-order (temperature engine-1 > +setpoint+) 
           (temperature engine-2 > +setpoint+)) 
(:during (temperature engine-1 > +setpoint+) 
         (:episode (altitude +self+) 
           :quality :no-constraints 
           :trend (:rate :decreasing))) 

Constraints on events (:atomic-episode (ready camera-1)  
  :timing (< (start-of +this-task+))) 
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